Anthony Joseph Studer

Assistant Professor

Dr. Studer improves the efficiency and productivity of cereal crops by optimizing photosynthesis and water use. His research contributes to the development of crops that are resilient to climate change and meet the needs of growers at the regional, national, and international levels.

Primary Disciplines

Education

  • Ph.D. Genetics, University of Wisconsin-Madison, 2011.
  • B.S. Biology, Defiance College, 2005.

Research Interests

  • My lab studies the evolution, regulation, and function of the carbon concentrating mechanism employed by plants for C4 photosynthesis. This process plays an important role in carbon dioxide uptake and transpirational water loss, and thus, has direct implications for photosynthetic and water-use efficiency. Elucidating the genetic control of photosynthesis will enable the manipulation of crops (through both breeding and engineering) to improve productivity and sustainability, which will be vital for food and fuel security in a changing environment.

Selected Articles in Journals

  • Twohey III, R. J., Roberts, L. M., & Studer A. J. (2018). Leaf Stable Carbon Isotope Composition Reflects Transpiration Efficiency in Zea mays. The Plant Journal, https://doi.org/10.1111/tpj.14135
  • Kolbe, A. R., Brutnell, T. P., Cousins, A. B., & Studer, A. J. (2018). Carbonic anhydrase mutants in Zea mays have altered stomatal responses to environmental signals. Plant Physiology, https://doi.org/10.1104/pp.18.00176
  • Kolbe A. R., Studer A. J., & Cousins A. B. (2018). Biochemical and transcriptomic analysis of maize diversity to elucidate drivers of leaf carbon isotope composition. Functional Plant Biology https://doi.org/10.1071/FP17265
  • Studer, A. J., Wang, H., & Doebley, J. F. (2017). Selection during maize domestication targeted a gene network controlling plant and inflorescence architecture. Genetics, 207(2), 755-765.
  • Huang, P., Studer, A. J., Schnable, J. C., Kellogg, E. A., & Brutnell, T. P. (2017). Cross species selection scans identify components of C4 photosynthesis in the grasses. Journal of Experimental Botany, erw256.
  • Studer, A. J.*, Schnable, J. C.*, Weissmann, S., Kolbe, A. R., McKain, M. R., Shao, Y., Cousins, A. B., Kellogg, E. A., & Brutnell, T. P. (2016). The draft genome of Dichanthelium oligosanthes: A C3 panicoid grass species. Genome Biol., 17(1) 223.
  • Yang, C. J., Kursel, L. E., Studer, A. J., Bartlett, M. E., Whipple, C. J., & Doebley, J. F. (2016). A gene for genetic background in Zea mays: fine-mapping enhancer of teosinte branched1. 2 (etb1. 2) to a YABBY class transcription factor. Genetics, 204(4),
  • Wang, H., Studer, A.J., Zhao, Q., Meeley, R., & Doebley, J. (2015) Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in tga1. Genetics, 200(3), 965-974.
  • Wang, L., A. Czedik-Eysenberg, R. Mertz, Y. Si, T. Tohge, A. Nunes-Nesi, S. Arrivault, L. Dedow, D. Bryant, W. Zhou, J. Xu, S. Weissmann, A. J. Studer, et al. (2014) Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nature Biotechnology, doi:10.1038/nbt.3019
  • Studer, A. J., Gandin, A., Kolbe, A. R., Wang, L., Cousins, A. B., & Brutnell, T. P. (2014). A limited role for carbonic anhydrase in C4 photosynthesis as revealed by a ca1ca2 double mutant in maize. Plant physiology, 165(2), 608-617.
  • Studer, A. J., & Doebley, J. F. (2012). Evidence for a natural allelic series at the maize domestication locus teosinte branched1. Genetics, 191(3), 951-958.
  • Studer, A. J., Zhao, Q., Ross-Ibarra, J., & Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nature genetics, 43(11), 1160-1163.
  • Studer, A. J., & Doebley, J. F. (2011). Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1. Genetics, 188(3), 673-681.
  • Quijada, P., Shannon, L. M., Glaubitz, J. C., Studer, A. J., & Doebley, J. (2009). Characterization of a major maize domestication QTL on the short arm of chromosome 1. Maydica 54(4), 401-408.